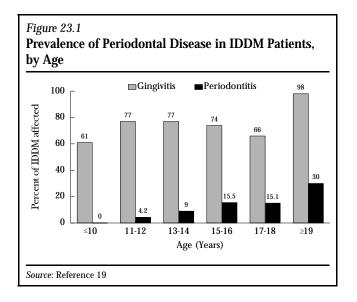
Chapter 23 Oral Complications in Diabetes

Harald Löe, DDS, and Robert J. Genco, DDS, PhD

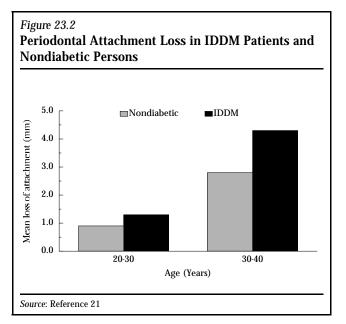
SUMMARY

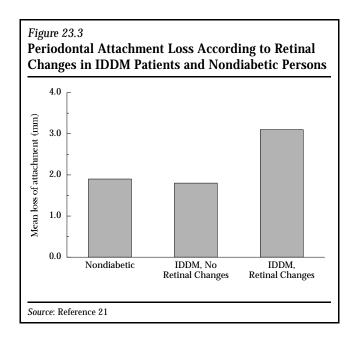
ata regarding oral complications in diabetes prior to the insulin era are scarce, possibly due to the limited scope of oral health care of that time and the short life span of the insulin-requiring diabetic patient. During the past 40 years, much data have been generated emphasizing the frequent occurrence of oral afflictions in patients with insulin-dependent diabetes mellitus (IDDM) and non-insulin-dependent diabetes mellitus (NIDDM). Perhaps the most important finding is that periodontal disease is more severe and occurs with higher frequency in diabetic patients (both NIDDM and IDDM), especially if the diabetes is not well controlled and there are other complications, such as retinopathy. The reason for the greater occurrence of periodontal destruction in diabetes is not clear. However, studies of the periodontal flora find similar microorganisms in diabetic and nondiabetic individuals, suggesting that alteration in host responses to periodontal pathogens account for these differences in periodontal destruction. For example, increased susceptibility to infection by periodontal bacteria associ-


CARIES (TOOTH DECAY)

Children with IDDM have been reported to have caries incidence that is higher¹, lower²⁻⁴, or similar to that of nondiabetic children. This contradiction may possibly be explained by cohort characteristics, degree of diabetes control, and degree of adherence to dietary prescriptions. Adult patients with poor control of their IDDM seem to have more coronal caries⁵⁻⁷. In the general population, the frequency of root caries increases with age and is three times more prevalent in those age ≥ 65 years compared with young adults⁸. However, very few studies have reported on the incidence of root-surface caries as a significant problem in older patients with IDDM or NIDDM⁹. ated with altered phagocyte functions and reduced healing capacity associated with altered collagen metabolism may explain, in part, the increased levels of periodontal disease in diabetes.

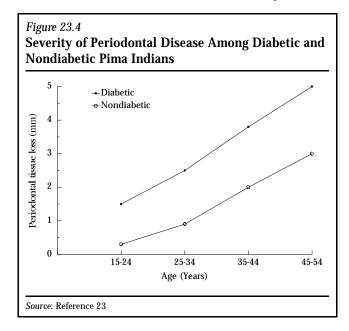
Caries in the crowns of teeth appear to be greater in adults with poor control of IDDM. However, the prevalence of root caries requires further studies. Oral infections aside from dental caries and periodontal disease are often more severe. Life-threatening deep neck infections and palatal ulcers exemplify the severity of these conditions. Mucosal abnormalities and oral bacterial and fungal infections may reflect undiagnosed diabetes or identify poorly controlled diabetes. Successful management of oral infections, including periodontal diseases, seems to depend on establishing metabolic control in diabetic patients. Knowledge of oral co-morbidity among people with diabetes is generally poor and suggests the need for appropriate health education and health promotion to improve the oral health of diabetic patients.


PERIODONTAL DISEASE


Periodontal disease is the most prevalent oral complication in IDDM and NIDDM patients and has been labeled the "sixth complication of diabetes mellitus"¹⁰. Numerous studies have shown both increased prevalence and severity of periodontal disease in patients with IDDM. Diabetic children and adults with less than optimal metabolic control show a tendency towards higher gingivitis scores¹¹⁻¹⁷. Early case reports suggested that diabetic adolescents and teenagers may suffer from periodontitis¹⁸. In a more recent study, the prevalence of periodontal disease was 9.8% in 263 patients with IDDM, compared with 1.7% in people without diabetes¹⁹. Most of the periodontal disease was found in those age 11-18 years (Figure 23.1).

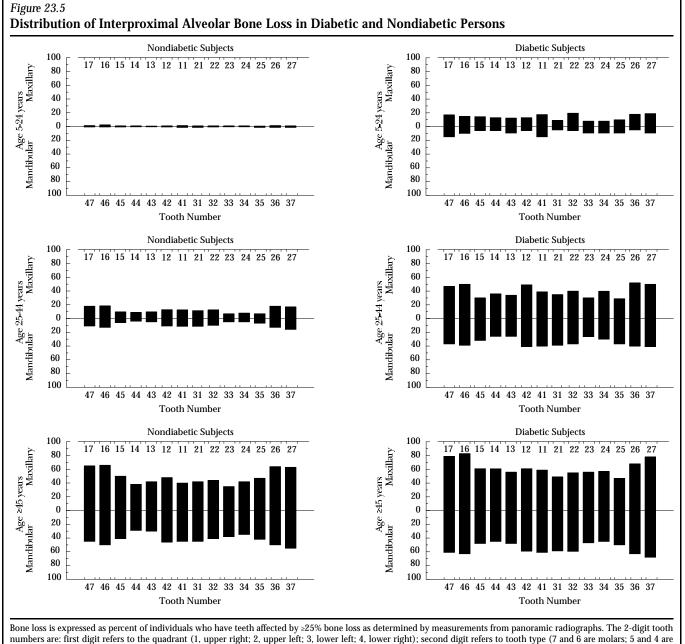
However, earlier rapid periodontal destruction was not found in adolescent patients with IDDM in Finland¹⁵. This difference may be related to different levels of metabolic control in participants of the two studies. For example, case reports suggest a strong relationship between rapid periodontal breakdown and elevated blood glucose levels²⁰.

Patients with IDDM of >10 years duration had greater loss of periodontal attachment compared with those of <10 years duration²¹. This was found to be particularly true for patients age ≥35 years (Figure 23.2). More recently, it was reported that IDDM patients age 40-50 years with long IDDM duration had significantly more sites with advanced periodontal destruction and alveolar bone loss than people without diabetes¹⁷. It has also been demonstrated²¹ and confirmed¹⁶ that in IDDM patients with retinal changes



the loss of periodontal attachment is significantly larger than in IDDM patients without retinal changes (Figure 23.3).

Several studies have clearly demonstrated that IDDM patients with poor long-term control of diabetes have increased extent and severity of periodontal disease, whereas those who maintain good metabolic control have minimal periodontal problems. Patients with IDDM of long duration who have retinopathy tend to exhibit more loss of periodontal attachment as they reach age 40-50 years. Good oral home care and frequent professional check-ups and care are important for these patients²².


Few studies have dealt with NIDDM subjects. In a

study of Pima Indians, 40% of whom have NIDDM, diabetic patients age <40 years had increased attachment loss, and alveolar bone loss was associated with increased glucose intolerance²³. Periodontal tissue loss increased with age and was higher in people with diabetes compared with people without diabetes in all age groups (Figure 23.4). Alveolar bone loss also increased with age and was substantially more frequent in patients with NIDDM compared with nondiabetic people age 5-44 years (Figure 23.5). Toothlessness was 15 times higher in the diabetic than in the nondiabetic group. Indeed, 30% of these young adults with

NIDDM had no teeth. The odds ratio for subjects with NIDDM for increased risk of periodontal destruction was 3.43 (95% confidence interval (CI) 2.28-5.16)²⁴. In this population, the age- and sex-adjusted incidence of periodontal disease in subjects with NIDDM was 75 cases per 1,000 person-years, which was substantially higher than the rate of 29 cases per 1,000 person-years in subjects without diabetes²⁵ (Table 23.1).

Early studies of the pathogenesis of periodontal disease in diabetic patients centered on the general feature of "basement membrane thickening"²⁶ and possi-

premolars; 3 is a canine; 2 and 1 are incisors).

Source: Reference 23

Table 23.1 Incidence of Periodontal Disease in Pima Indians by Diabetes Status	
Age- and sex-adjusted incidence (new cases/1,000 person-years)	
28.9	
75.5	
2.6	

ble changes in the vasculature²⁷⁻²⁹. More recent studies have focused on the role of the periodontal infection¹⁵, the microflora of dental plaque³⁰, collagen metabolism^{31,32}, leukocyte function³³, and other aspects of the host response^{34,35}. All of these factors may individually or synergistally contribute to periodontal disease.

The reason for the greater occurrence of periodontal destruction in diabetics is not clear. However, studies of the periodontal flora find similar microorganisms in diabetic and nondiabetic people^{30,36}, suggesting that alteration in host responses to periodontal pathogens account for these differences in periodontal destruction. For example, increased susceptibility to infection by periodontal bacteria associated with altered phagocyte functions and reduced healing capacity associated with altered collagen metabolism may explain, in part, the increased levels of periodontal disease in diabetic patients.

The response to treatment suggests that the periodontal lesions are eminently treatable^{37,38} and that eradication of the infection and the inflammatory foci may reduce insulin requirements³⁹. The knowledge among people with diabetes of oral co-morbidity is generally poor⁴⁰ and suggests the need for appropriate health education and health promotion to improve the oral health of diabetic patients.

SALIVA

Reduced salivary secretion has been a frequent finding in experimental diabetes in animals⁴¹ as well as in IDDM patients. A non-inflammatory, non-neoplastic enlargement of the parotid gland is believed to occur in 25% of patients with moderate to severe diabetes and especially in IDDM patients with poor metabolic control⁴². The etiology of this condition is unknown, but it is speculated that the enlargement occurs in response to decreased insulin production or that the Sjögren's syndrome may underlie this symptom⁴³. Also, the possibility that in some cases these enlargements may be due to a low degree of mumps infection has been mentioned⁴⁴. Increased concentration of Ca⁺⁺ in both parotid and submandibular saliva of IDDM subjects⁴⁵ might explain the frequently reported increase in calculus formation in such patients. However, in well-controlled individuals with altered glucose metabolism, salivary gland function does not seem to be significantly impaired⁴⁶.

OTHER PATHOLOGICAL FEATURES OF THE ORAL CAVITY

Other pathology associated with diabetes includes oral infections other than those responsible for dental caries and periodontal destruction. Case reports on life-threatening deep neck infection from a periodontal abscess⁴⁷ and fatal palatal ulcers⁴⁸ exemplify the severity of these conditions. To what extent such incidents are part of the broader issue of increased occurrence of infection in people with diabetes, or may have strictly a local etiology, is open to question. In addition to these infections, other localized or regional infections such as mucormycosis, "malignant otitis media," necrotizing cellulitis, urinary tract infections, skin infections, and pneumonia have also been found more often in poorly controlled diabetic patients than in others. There are also indications that patients with elevated salivary glucose levels carry candida intraorally more often than those with lower glucose levels⁴⁹. Moreover, a study of 40 patients with lichen planus found that 11 patients (28%) had overt or latent diabetes, compared with none of the control group⁵⁰, the implication being that diabetes may be related to the pathogenesis of lichen planus. The evidence for an immunological defect⁵¹ and deficient leukocyte functions superimposed on the metabolic abnormality of diabetes seems increasingly convincing.

Finally, it should be mentioned that diabetes may initially manifest with oral symptoms other than thirst⁵². Mucosal abnormalities, such as erosive lichen planus, burning tongue, and gingival bleeding, as well as sialorrhoea and sialosis, have been found in undiagnosed NIDDM, most of which resolved on treatment directed at improving glycemic control⁵².

Dr. Harald Löe is Former Director, National Institute of Dental Research, National Institutes of Health, Bethesda, MD and University Professor, Department of Periodontology, University of Connecticut Dental School, Farmington, CT; Dr. Robert J. Genco, is Distinguished Professor and Chair, Department of Oral Biology, School of Dentistry, State University of New York, Buffalo, NY.

REFERENCES

- 1. Twetman S, Nederfors T, Stahl B, Aronson S: Two-year longitudinal observations of salivary status and dental caries in children with insulin-dependent diabetes mellitus. *Pediatr Dent* 14:184-88, 1992
- Kirk JM, Kinirons MJ: Dental health of young insulin dependent diabetic subjects in Northern Ireland. *Community Dent Health* 8:335-41, 1991
- 3. Goteiner D, Vogel R, Deasy M, Goteiner C: Periodontal and caries experience in children with insulin-dependent diabetes mellitus. *J Am Dent Assoc* 113:277-79, 1986
- 4. Matsson L, Koch G: Caries frequency in children with controlled diabetes. *Scand J Dent Res* 83:327-32, 1975
- Wegner H: Dental caries in young diabetics. Caries Res 5:188-92, 1971
- Pohjamo L, Knuuttila M, Tervonen T, Haukipuro K: Caries prevalence related to the control of diabetes. *Proc Finn Dent Soc* 84:247-52, 1988
- Jones RB, McCallum RM, Kay EJ, Kirkin V, McDonald P: Oral health and oral health behavior in a population of diabetic outpatient clinic attenders. *Community Dent Oral Epidemiol* 20:204-07, 1992
- Miller AJ, Brunelle JA, Carlos JP, Brown LJ, Löe H: Oral Health of United States Adults. The National Survey of Oral Health of U.S. Employed Adults and Seniors: 1985-1986 National Findings. Bethesda, MD: National Institute of Dental Research; U.S. Department of Health and Human Services. NIH publ. no. 87-2868, 1987
- 9. Tavares M, Depaola P, Soparkar P, Joshipura K: The prevalence of root caries in a diabetic population. *J Dent Res* 70:979-83, 1991
- 10. Löe, H: Periodontal disease. The sixth complication of diabetes mellitus. *Diabetes Care* 16:329-34, 1993
- 11. Kjellman O, Henricksson CO, Berghagen N, Andersson B: Oral conditions in 105 subjects with insulin-treated diabetes mellitus. *Sven Tandlak Tidskr* 63:99-110, 1970
- Gusberti FA, Syed SA, Bacon G, Grossman N, Loesche WJ: Puberty gingivitis in insulin-dependent diabetic children. I. Cross-sectional observations. J Periodontol 54:714-20, 1983
- Leeper SH, Kalkwarf KL, Strom EA: Oral status of "controlled" adolescent type I diabetics. J Oral Med 40:127-33, 1985
- Ervasti T, Knuuttila M, Pohjamo L, Haukipuro K: Relation between control of diabetes and gingival bleeding. J Periodontol 56:154-57, 1985
- Sandholm L, Swanljung O, Rytömaa I, Kaprio EA, Mäenpää J: Periodontal status of Finnish adolescents with insulin-dependent diabetes mellitus. J Clin Periodontol 16:617-20, 1989
- Rylander H, Ramberg P, Blohme G, Lindhe J: Prevalence of periodontal disease in young diabetics. J Clin Periodontol 14:38-43, 1987
- Hugoson A, Thorstensson H, Falk H, Kuylenstierna J: Periodontal conditions in insulin-dependent diabetics. J Clin Periodontol 16:215-23, 1989
- Rutledge CE: Oral and roentgenographic aspects of the teeth and jaws of juvenile diabetics. J Am Dent Assoc 27:1740-50, 1940
- 19. Cianciola LJ, Park BH, Bruck E, Mosovich L, Genco RJ: Prevalence of periodontal disease in insulin-dependent dia-

betes mellitus (juvenile diabetes). J Am Dent Assoc 104:653-60, 1982

- Ainamo J, Lahtinen A, Uitto VJ: Rapid periodontal destruction in adult humans with poorly controlled diabetes. A report of 2 cases. J Clin Periodontol 17:22-28, 1990
- 21. Glavind L, Lund B, Löe H: The relationship between periodontal state and diabetes duration, insulin dosage and retinal changes. *J Periodontal* 39:341-47, 1968
- 22. Oliver RC, Tervonen T, Bereuter J, Flynn D: Diabetes—a risk factor for periodontitis? *Northwest Dent* 70:26-27, 1991
- Shlossman M, Knowler WC, Pettitt DJ, Genco RJ: Type 2 diabetes mellitus and periodontal disease. J Am Dent Assoc 121:532-36, 1990
- 24. Emrich LJ, Shlossman M, Genco RJ: Periodontal disease in non-insulin-dependent diabetes mellitus. J Periodontol 62:123-31, 1991
- Nelson RG, Shlossman M, Budding LM, Pettitt, DJ, Saad MF, Genco RJ, Knowler WC: Periodontal disease and NIDDM in Pima Indians. *Diabetes Care* 13:836-49, 1990
- 26. Campbell MJ: The effect of age and the duration of diabetes mellitus on the width of the basement membrane of small vessels. *Aust Dent J* 19:414-19, 1974
- 27. Gottsegen R: A fresh look at the maintenance phase of periodontal therapy. *Alpha Omegan* 76:85-93, 1983
- Frantzis TG, Reeve CM, Brown AL Jr: The ultrastructure of capillary basement membranes in the attached gingiva of diabetic and nondiabetic patients with periodontal disease. J Periodontol 42:406-11, 1971
- 29. Listgarten MA, Ricker FH Jr, Laster L, Shapiro J, Cohen DW: Vascular basement lamina thickness in the normal and inflamed gingiva of diabetics and non-diabetics. *J Periodontol* 45:676-84, 1974
- Zambon JJ, Reynolds H, Fisher JG, Shlossman M, Dunford R, Genco RJ: Microbiological and immunological studies of adult periodontitis in patients with noninsulin-dependent diabetes mellitus. J Periodontol 59:23-31, 1988
- Kaplan R, Mulvihill J, Ramamurthy N, Golub L: Gingival collagen metabolism in human diabetics. *J Dent Res* 61 (Special Issue A):275, 1982
- McNamara T, Klingsberg J, Ramamurthy N, Golub L: Crevicular fluid studies of a diabetic and her non-diabetic twin. *J Dent Res* 58 (Special Issue A):351, 1979
- 33. Manouchehr-Pour M, Spagnuolo PJ, Rodman HM, Bissada NF: Comparison of neutrophil chemotactic responses in diabetic patients with mild and severe periodontal disease. J Periodontol 52:410-14, 1981
- Morinushi T, Lopatin DE, Syed SA, Bacon G, Kowalski CJ, Loesche WJ: Humoral immune response to selected subgingival plaque microorganisms in insulin-dependent diabetic children. J Periodontol 60:199-204, 1989
- Anil S, Remani P, Vijayakumar T, Hari S: Cell-mediated and humoral immune response in diabetic patients with periodontitis. Oral Surg Oral Med Oral Pathol 70:44-48, 1990
- Mashimo PA, Yamamoto Y, Slots J, Park BH, Genco RJ: The periodontal microflora of juvenile diabetics: culture, immunofluorescence, and serum antibody studies. *J Periodontol* 54:420-30, 1983
- 37. Bay I, Ainamo J, Gad T: The response of young diabetics to

periodontal treatment. J Periodontol 45:806-08, 1974

- Tervonen T, Knuuttila M, Pohjamo L, Nurkkala H: Immediate response to nonsurgical periodontal treatment in subjects with diabetes mellitus. *J Clin Periodontol* 18:65-68, 1991
- Williams RC, Mahan CJ: Periodontal disease and diabetes in young adults. J Am Med Assoc 172:776-78, 1960
- Adams PF, Benson V: Current estimates from the National Health Interview Survey, 1989. Vital and Health Statistics, Series 10, No. 176. Hyattsville, MD: National Center for Health Statistics. PHS publ. no. 90-1054, 1990
- 41. Cutler LS, Pinney HE, Christian C, Russotto SB: Ultrastructural studies of the rat submandibular gland in streptozotocin induced diabetes mellitus. *Virchows Arch A Pathol Pathol Anat* 382:301-11, 1979
- 42. Russotto SB: Asymptomatic parotid gland enlargement in diabetes mellitus. *Oral Surg Oral Med Oral Pathol* 52:594-98, 1981
- Binder A, Maddison PJ, Skinner P, Kurtz A, Isenberg DA: Sjögren's syndrome: Association with type-1 diabetes mellitus. Br J Rheumatol 28:518-20, 1989
- Hyöty H, Leinikki P, Reunanen A, Ilonen J, Surcel HM, Rilva A, Käär ML, Huupponen T, Hakulinen A, Mäkelä AL: Mumps infections in the etiology of type 1 (insulin-dependent) diabetes. *Diabetes Res* 9:111-16, 1988

- 45. Marder MZ, Abelson DC, Mandel ID: Salivary alterations in diabetes mellitus. *J Periodontol* 46:567-69, 1975
- Cherry-Peppers G, Sorkin J, Andres R, Baum BJ, Ship JA: Salivary gland function and glucose metabolic status. J Gerontol 47:M130-34, 1992
- 47. Harrison GA, Schultz TA, Schaberg SJ: Deep neck infection complicated by diabetes mellitus. Report of a case. *Oral Surg Oral Med Oral Pathol* 55:133-37, 1983
- Van der Westhuijzen AJ, Grotepass FW, Wyma G, Padayachee A: A rapidly fatal palatal ulcer: rhinocerebral mucormycosis. Oral Surg Oral Med Oral Pathol 68:32-36, 1989
- 49. Darwazeh AMG, MacFarlane TW, McCuish A, Lamey P-J: Mixed salivary glucose levels and candidal carriage in patients with diabetes mellitus. *J Oral Pathol Med* 20:280-83, 1991
- 50. Lundström, IM: Incidence of diabetes mellitus in patients with oral lichen planus. *Int J Oral Surg* 12:147-52, 1983
- 51. Elder ME, Maclaren NK: Identification of profound peripheral T lymphocyte immunodeficiencies in the spontaneously diabetic BB rat. *J Immunol* 130:1723-31, 1983
- Gibson J, Lamey P-J, Lewis MAO, Frier BM: Oral manifestations of previously undiagnosed non-insulin dependent diabetes mellitus. J Oral Pathol Med 19: 284-87, 1990